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It is commondecisionanalysispracticeto elicit quantilesof continuousuncertaintieandthenfit acontinuous

probability distributionto the correspondingprobability-quantilepairs This process is inconvenient because it requires
curvefitting and the bestit distribution will often not honor the assessed poiBisstrategicallyextendingthe
JohnsorDistribution Systemwe developa newdistributionsystenthathonorsany symmetricpercentiletriplet of
quantileassessmentg.g.the 10"-50"-90") in conjunctionwith known supportbounds Further,our newsystemis

directly parameterizethy the assesseduantilesandsupportbounds gliminatingthe needto applyafitting procedure.

Our newsystemis practical,flexible, and aswe demonstrateableto matchthe shape®f numeraiscommonlynamed

distributions.
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1. Introduction

SupposeXis a continuous random variable with cumulative distribution function (cdf)

)
p=FK( X 9,

andquantile function

% =Q(p inf{x B p K. @
If F, is continuousand increasingver the support oX, which we assume here, th€) is simply the
inverse cdfof X. We refer to x, as thep-level quantile ofX or the p A00)th percentile ofX. For
example,x, s = Q, (0.5) denotes the O-evel quantile, or 50percentile P50 of X.

In many decision analysis applications, analysts assessgrtainty by eliciting a limited number
(three is commoyof (p, X,) pairs from a subjeeanatter expertFor example, it is common to assess the
0.10-, 0.50-, and0.90-level quantilesr, equivalently, the 10 50", and 9¢' percenties. We assume that
the (p,X,) pairs arecoherenti they satisfy the axioms of probabilitsiven a set ofassessments

analysts may thefit a continuousdf to these pointsin practice, his processnayrequiresolving a non

linear optimization problenfor the distribution parametersvhich some analysts ay find difficult to

! For example, see McNamee and Celona (1990), Hammond and Bickel (2013a), and Hurst et al. (2000).
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implement More importantly,however,the besfit cdf will often not honor the assessed probability
quantile pairsFor example, ithe bestfit distribution family is specified bytwo parameterssuch as the
mean and variance, théris likely thatthe selected distribution wifiot pass througlany points provided
by the expert. This can cause confusion and decrease trust in the analysis.

Recently, Ketn and Powley (2011) developdtle idea ofquantileparameterized distributions
(QPDs. QPDs areparameterized hyand thus precisely honahe (p, X,) pairs elicited from an expert
Specific to this new class of QPIsK e e | i n a sasimpl® @narma ($Q@N) systemDistributions
within the SQN systerare parameterized by four distingp, X,) assessment pairs; for example, th&, 25
50", 758" and 98 percentilesThe flexibility of the SQN system is limited, howay since it cannot
honoranyfour coherent(p, X,) pairs.

In this paper, we develop a new family of continuous distributibasare prameterized by their
quantiles, with boundedand semibounded supporf. Our system isan extension ofthe Johnson
distribution system (JDSbut can honoany symmetricpercentiletriplet (which we formally define in
§82), making it much more flexibl thar the SQN, including its extensions by Powley (20 3)hich we
discusdater. We refer to our new family of probability distributions as tHgRID systemWe also show
thatour JQPDsystem can closely approximatesast array of commordyameddistributions (e.g., beta,
gamma, lognormal, efc While our system is new, we must stress that it is not unique. Inttesd are
an infinite number of distributions that pass through any finite set of probahilitgttile pairs. As we
explain more fuly below, our objective is to develop a family of continuous distributions that honor
assessed quantiles, are straiigintvard to implement in practice, and are close to named distributions
exhibiting the same probabiliyuantile pairs.

The remainder ofhis paper is organized as follow82 specifiesfive criteria that guidethe
development obur new distribution family In 83, we analyzeéwo existing distribution systems that are
amenable to quantidparameterized representatioakyng with their respstive strengths and limitations

In 84, we extend the JDS ttesignour new JQPD distribution systemmn 85, we quantify the ability of

2 We focus on the bounded and seéoiinded cases for developing our new system on the presumption that many
physical quantities have a finite and knolewer (but not necessarily upper) limit of support (e.qg., oil reserves
cannot be negative). However we also generate several unbounded distribut@nshiargin we identify several
limiting distributions.

12/2/2016 2
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the JQPD system to closely match the shape of common distribution famities6, we examine the
flexibility of the JQPD system, and identify several limitingsttibutions.In 87, we illustrate how to
implement the RPD distribution sgtem. Finally, we conclude &8, noting the benefits and limitations
of our new distribution systermcluding importantidvantages and disadvantages-QRD compared to
the QPDs of Keelin and Powley (2011), Powley (2013), and Keelin (20¥6)alsosuggestseveral

extensions for future work.

2 . Desirable Features ofa Distribution Family

Given the wide array of potential continuous distribution famifiesn which one may choosét is
helpful to have some criteria or desiderata that the distrib@dimily should meet, if possiblén this
section, we propose a set of criteria that seem, to us, desirable from the perspective of decision analysis

practice We begin with some definitions that will make our development more efficient.
2.1 Definitions

In the context of elicitation, Wwen assessing an uncertaifitgm a subjecimatter experta common
practice is toelicit a triplet of lowbasehigh quantile values of the form: x, =(X_, %5, % ). For
example, X, ; = (X, 10 X050 X0e) denotes thevector of 16, 50", and 90" percentiles To streamline our
discussion, we introdedhe following definitions:

Definition 1. Consider anyJ~ (0,0.%), and define arttevel symmetric percentile triplet (U-
SPT)as a vectox, = (X, %, % ), Wherex, denotes thé&Hevel quantile for theandom variablé.

Definition 2. Presume thathelower, |, and uppery, supportbounds(l < u) of X are specifiecnd
that an expert providesx, =(X,%s. % ) for some U N (0,0.8). Collectively, define
d, =@, xu) X Xe0% )

Definition 3. The vector d, =(I, x,u) is compatible if and only if U~ (0,0.%) and
<X, s %X . U

Definition 4. Define Q(p;d,) as a quantile function (QF) om M [0,1] for some probability

distribution, and having distribution parameters giverdby (I, x,u).
2.2 Desiderata

We seek a probability distribution systetiefined byQ( p;d, ) , thatsatisfiedive criteria

12/2/2016 3
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(1) QuantileParameterized The distribution is characterized (p;d,), whichitself is directly
parameterized byd,, the assessed quantiles addsiredsupport boundsThis has several
benefits. Fist, & discussed above, this is convenient because it eliminates the rrepdyta fit
procedure (e.g., solve an optimization proble®gcond,Q(p;d,) will honor d,, the assessed
quantiles and known limits of support. Third, havi@gp;d,) allows the analyst talirectly
implement Monte Cdo sampling, via thanverse transfornmethod. Fourth, having(p;d,)
allows for the computan of additional quantiles, allowing the analyst to verify the assessment
with an expert by checking additional points. Finally, possessio®(qfd,) facilitates the
subsequent construction discreteapproximationssee Bickel et al(2011) and Hammonand
Bickel (2013a, 2013b¥pr a review of discretization methods, along with recent extensions.

(2) Availability of CDF 1T Q(pd,) is directly invertible, so that the distribution cdf, denoted
F(xd,), is readily availableThis allows the analyst to verify the assessment with an expert by
checkingadditional points similar to Q(p;d,) . Also, density functions (pdfs) can readily be
obtained fromF(x;d,) via differentiation.

(3) Maximally-Feasiblei For any compatibled, , the QF given byQ(p;d,) satisfies Q(0;d,)=1,
Q(a;d,)=x,, Q(0.50d, )=x, Q- a;d,) =, and Q(Ld,)=u. That is, the distribution
characterized byQ(p;d,) honors both the support bounds, and the assessed quantiles given by
X, , for any compatibled, . We refer to this as theaximally-feasible (MF) property, within
the context of our setub.

(4) Closeness to CommornNamed Distributionsi Q(p;d,) closely approximates the QF of
numerous commonipamed distributions that share the sadg i.e., the samd}SPT and
support. In the case of finite support, we would like the distribution family to closely approximate
the Z - (bell-), J, and Ushaped distributions contained in the beta family. For -gefimite
supportwe would like the distribution family to closely approximate the shapes of the lognormal,

gamma, inversgamma, and befarime distributions.

% In this context, maximalkfeasible (MF) does not necessarily guarantee that there exiQ®B distribution that
satisfies a set of five coheret &) pairs hat arenotof the SPT structure defined in Definitions 1 and 2; for

example, the {#§, 25", 53", 95", 100"} percentiles, which [collectively] are not of SPT form for soithe (0,0.50).

“We more precisely definseAlsour notion of fclosenessod

12/2/2016 4
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(5) Highly Flexiblei Specifically, we refer to the span of a system within the skewnesssis
space developed by Pearg@895, 1901, 196).
The ACl osenessodo desideratum is also motivated by
present, which we believe to be guieasonable in practice. In addition, we seek a distribatipable of
representing phenomena whose underlying distribution is derived from an underlying physical process.
Examples include the normal (lognormal) distributions, which approximately acdiie summation
(product) of independent or weaktigpendent random variables due to Central Limit Theorem (CLT)

effects, and the exponential distributions for waiting times.
2.3 lllustrative Examples

Throughout this paper, ewely on twoillustrative example (bounded and sentioundedsuppor} to
demonstrate our new distribution systdm the case oboundedsupport, suppose an expert has been
asked to assess peak market share for a new praddgprovidesd,, =(0,0.32,0.40,0.60,.. Figure 1
presents théest fit beta distribution QF @ashedline), using leassquares, subject to honoring the
bounds,and the QF for ounew JQPD family &olid line). Notice that there iso beta distribution
satisfyingall five points ind, ,,, Since generalized beta distributions are specified by four pamdshus

the best we can do is fit a distribution through thesediven points On the other hand;QPD exactly
matches the provided assessmefitmin, we do not claim thatQPD is the only distribution that passes

through these five points.

12/2/2016 5
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Figure 1. Beta LeastSquares Fit versus a QPD Assignment ford,,, =(0,0.32,0.40,0.60,
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Figure 2 presents an example with sebdundedsupport. In this case, an expert is assessing the
uncertaity surrounding thecapital expenditures (CAPEX) of a drilling ventuand provides
d, ,,=(0,30,40,60,2 $MM.® Figure 2 showsleastsquares fits for Weibull and lognorm@Fs (dashed
lines) with respect tod, ,, =(0,30,40,60,=, along withour JQPD assignment (solid line)n this case,
there is no distribution within the Weibull or lognormal families that horfyrg. In addition, while not
shown, no gamma or bepsime distribution honorsl, ,, either.

In the market shar§CAPEX) example, the leastquares fit entails solving a ndinear
optimization problem over thehapeparametersof the beta (lognormal, Weibull) distribution(so
minimize the measquared error More importantly, however, the commoriamed distributions
selected for the fit in each case do not honor the point§ jp. Thus, we see that the beta, Weibull,
lognormal, and gamma distributions fail to sati€iyteria 1 (quantike-parameterized) and 3 (maximally
feasibl§g. More generally, distributions within the flexible family developed by Pearson (1895, 1901,
1916) alsdfail to satisfy Criteria 1 and,3ncluding: betapetaprime, gamma, inversgammaandType

A

® Of course, CAPEX cannot be infinite. Assuming it is unbounded above is a modeling decision meant to represent
the fact that the upper bound is unknowmd @ossibly several orders of magnitude larger than theeé@entile.

12/2/2016 6
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Figure 2. LeastSquares Fits versus a-DPD Assignmentfor d,,=(0,30,40,60,a
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There are several recenflyoposed distributions that nearly meet these five desiderata. The
straightline approach presented by Clemen and Reilly §198s well as maximusantropy methods
proposed by Abbas (2003) seek to add no additional information to an uncertainty other than the assessed
guantileprobability pairs, by assigning uniform conditional distributions between adjacent percentile
assessméas. These methods (and their variants) are maxinfiadlgible within our construct, and have
closedform pdfs, cdfs, and quantile functions. The same applies to the General Segmented Distributions
(GSD) proposed by Vander Wielen and Vander Wielen (2018)png others and to discrete
approximations (discretization). However, if knowledge of smoothness is present, which veediteh
be the case and assumeer e, t hen the unwarranted fAkinkso (dis
distributions may lesaccur at el y represent an expertds knowl e
Garthwaite et al. (2005).

Furthermore, due to their lumpy nature, thestributions generally fail to satisfy Desiderata 4,
which is motivated in part by the desire of our distributions to be able to capture phenomena whose
distribution is derived from a weknown underlying physical processwhat Keelin (2016) refers to as

Type | distributions. Examples include: the normal (lognormal) distributions, which approximately occur

® See, for example: Kotz and Van DogD02a, 2002b, 2006).

12/2/2016 7
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as the summation (product) of independent or wed&jyendent random variables due to Central Limit
Theorem (CLT) effects; exponential distributions iftter-arrival times within a Poisson Process; Weibull
distributions, and related extensiGnin reliability theory for modeling the time between adjacent
component failures in complex systems. Unlike straigie, maximum entropy, GSD, etc., our
inherantly smooth JQPD distributions presented in this paper precisely subsume the pervasive normal
and lognormal distributions as special cases, but can also approximate Weibull, gamma, beta, and
numerous other commontyamed distributions with potent accuradyoreover, we show thatQPD
distributions, while smooth, can approximate triangular distributions with reasonable accuracy.

As we fow below, our new-QPD systenmeetsall of our criteria outlined above The J-QPD
systemconsists ofwo majorsubfamiles:

(1) J-JOPDB (bounded)Has finitelower and uppesupport boundd]l, u], and is parameterizeuay

any compatibled, = (I, x,u).
(2) JJOPD-S (semiboundedl: Has support orl, D) and is parameterized by any compatible
d, =@, % 9.

The market share example Bfgure 1 uses a -RPD-B distribution assignment, while the CAPEX

example inFigure2 uses a-PD-S distribution assignment.

3. The Simple @-Normal and Johnson Distribution Systems

In this section wecarefully analyzetwo flexible distribution systems that are amenable to quantile
parameterizedepresentations:
1 The Simple Q-Normal system (SQN), developed by Keelin and Powley (2011n¢luding
relevantextensions by Powley (2013).
1 TheJohnson distribution system (JDS)developed by Johnson (1949).
It is important to introduce the SQN system, sifiicmost closelyrelates to our new-QPD systemin
addition, the extensions to the SQ@itedby Powley (2013) contain mg similar features to our new

system However,as we showthe SQN and its extensiopessess severahortcomingghat limit their

" For example, see Mudholkar and Srivastava (1993).

12/2/2016 8
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usefulnesscompared to our newQPD system. We also review the JDS in this section, since it forms the

basis fordesigninghe new JQPD system in&
3.1 The Simple Q@-Normal System SQN)
ThestandardSQN systentKeelin and Powley011)is characterized biys QF:

Qn(P=a+ ® cQ(P d prQQ,
whereQ,* F' is thestandarchormal quantile functionThe parametersa, b, c, d), uniquely determine
a distribution within the SQN systenvia the solution to dinear system For instance, if the

(%25 Xo.50 X078 X0 Quantiles are giverthen we can easily obtafa, b, ¢, d) by solving
8% 08l 0.25 F'(0.25) 0.2%* (0.25%a
s 80 050 F*(0.50) 0.56* (0.50§D
&, 08 0.75 F'(0.75) 0.7%* (0.758&
(%(0.90 +E§ 0.90 F*(0.90) 0.9¢* (0.90

Powley (2013) characterizes tHeasibility andflexibility of the SQN system usingquantile

measures of distribution symmetrgidnoteds) and taitwidth (denoted), defined as follows:

s= X050~ X010
X000~ Xo.10
t= X010~ X001
X000~ Xo.10

Figure 3 shows the feasible region of the SQN within {lset} space, along with illustrations of the

shapes (densities) of several distributions.

Figure 3. Feasible Region of the SQN System in ths, {} Space- Powley (2013)
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t & o ——
¢ N S ——
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right skew \ s left skew
2 (3 (symmetry)
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While the SQN is quite tractabl&jgure 3 demonstrates that isot possible to assigmm&QN
distribution toan arbitraryvector of fourcompatiblequantiles Rather, thequantilesmust produce a
feasible{s, t} pair. Points ousideof the feasible region iRigure3 do not correspond tane&SQNQF.

In addition,being based on the standard normal distribut®@N distributions have support on
(-b, . Be)ng Qtransformationswhich we introduce in 4 uponthe SQN,and eliminating one of the
four basis functionsPowley (2013) produces tanew distribution systems: one witloundedsupport;
one with semboundedsupport. We refer to the first system as the PI8RQIN (or RSQN) system, which
can be generalized to a locatiscale family with boundesupport onl], u], andhavingthe following QF
characterizatich

Qs P =1 {u h (F (ar bp+'( F. 3
Note that (x,a,b) are shape parameter&iven d, =(l, x,u), we can solve for(x,a,b), and
subsequently rparameterize equation (3) to satisfy Criterion (quantileparameterized) The

corresponding expressions for,a,b) are:

18%550 " C
x=F ae_—l

E- 1aX 0 = XA, - 0
b= gu—l é- 64 2§
(1- 2a) F'(1 -a) ’
X- Flaﬁx |I 6-6 HL x
a= .
F'l-a)

We illustrate the usefulness of thisparameterized form of the-BQN system by applying it to the
market share example frofigure 1. Using the parameter expressions above (®ra,b), given

d,,,=(0,0.32,0.40,0.60,;, we obtain the fSQN QFrepresentation and plot shownHRigure4.

®Note that we effppcbiaseby f ue midade@N dudnienfiindtitneappiied the
probit operator, 0, and then implemented changes of
given by [, u]. The reasoning is as follows. If we apply the probit operator to the standard SQkhes & four
parameters become shape parameters. Combined with location and scale, the resulting distributions would require
six points. However, our SPT setup involves five points (an SPT and the two support bounds). Thus, we eliminate
one basis functioin order to remove a degree of freedom.

12/2/2016 10

O (



Hadlock and Bickel: Johnson QPDs
Forthcoming aDecision Analysis

Figure 4. P-SQN Assignment ford,,, =(0,0.32,0.40,0.60,
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Thus, unlike the beta distribution, theS®)N distritution satisfies Criteria {quantile parametized).

However, the QF representation given in (3) is not invertible, and thus-8@NPdoes not satisfy

Criterion 2 (availability of the cdf)Iin addition the RSQN distribution does natatisfy Criterion 3

(maximally-feasiblg. To illustrate, Figure 5 shows the FSQN QF assignment(dashedl for

d,.s =(0,0.25,0.35,0.65,, along with our corresponding@PD-B QF assignmenfsolid). Notice that

while the RSQN assignment satisfied, ,, =(0,0.25,0.35,0.65,;, it is not a valid QFbecausst is not

nondecreasing, wéreas our-QPD-B assignmentis a QF. Thus, we say that ,, =(0,0.25,0.35,0.65,:

is infeasible for the SQN system, and that theS®QN system daenot satisfy @terion 3 (maximally

feasiblg.

12/2/2016
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Figure 5. P-SQN (dashed) and JQPD-B (solid) Assignments ford, ,; =(0,0.25,0.35,0.65,:
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We refer to Powleyds s e c-8QNd(or eSQNesystem,dwhichyhast e m a ¢
semiboundedsupport onlf B), and the following QF characterization:
Q. son(P) =1 =P 7, “)
In this cased is a scale parameter, whieandb are shape parametefhe L-SQN system is constructed
in analogous fashion to theSON distribution, except hat we apply the fAexpd op
probit operatorSimilar to the PSQN system, we can solve f@g,a,b) in terms ofagivend, =(I, x, 9

. The corresponding expressions {gra,b) are:
q = X500
b= 109(x, - 1) Hog(s. , B 2loglys 1)-
(1- 2a) F*(1 -a) ’
q=1090¢, - 1) Hdoglys B (x a)y *(@F ap-
F'l-a) '

Thus, we see that-EQN satisfies Criteria 1lHowever, the QF representation in (4) is also not invertible,
and thus ESQN fails to satisfy Criterion 2An addition like P-SQN, the LSQN distributionfails to
satisfy Criterion 3Figure6 shows the ESQN QF assignment fad, , =(0,10,40,50,=, along with our
correspondingJ-QPD-S QF assignmentNote again that the-EQN assignment is not a valid QF, and

thus thatd, ,, = (0,10,40,50,= is infeasible for the {SQN system.

12/2/2016 12
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Figure 6. L-SQN (dashed and J-QPD-S (solid) Assignments ford, ,, =(0,10,40,50,=
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3.2 The Johnson Distribution System (JDS)

The JDS consists of three major subfamiliethe SU, SB, and the lognormal distributiorfSince the
lognormal distributions have only single shape parametewe do not consider the further in this
section.The QF for theSU distribution is given by:

Qu(p=x +4inh( (dE(p) 4lg @ o (5)
The parametersanda-correspond tdocation and scaleespectivelywhile G ando are shape parameters.
The QF of thestandardSU (3= 0, &= 1) results from applying hyperbolic sine Qransformatiorto the
QF of a normal distributioriThe SUsystemis quiteflexible, but hassupport on(-b, (&hnson 1949)
Also, four finite and distinct quantiles are required to specify a particular SU distribution, and this
involves solving a notfinear system of equations for the four paramete(S)in

The QFfor the SB dstribution is given by

T fF )+ )y
el =X 'l+exp(d( F' () "‘ﬁ

(d6 /0x (6)

The parameters-and a-correspond tdocation and scale, whereé@sand 2 are shape parameteiBhe

standard SB results from applying the logistic (or inverselogit) Q-transformation

12/2/2016 13
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T(y)=exp(y)/ (@ +exply), to the QF of a normal distributionSB distributons can be unimodal or

bimodal(Johnson 1948)

4. The J-QPD System

In this section welesignour new 3JQPD system, using the Johnson SU sysaem basis for construction,
andthe five criterialisted in 8 as design specificationg/e subsequentlghow that it satisfiethe MF
property

4.1 Engineering the Support of the JDS

One of the most powerful methoftsr engineering the support of a distributionbig the use of aQ-
transformationThe Q-Transformation RuléQTR), adoptedrom Gilchrist (2000) is as follows

The Q-Transformation Rule (QTR) i If T(x) is a nondecreasing function of, andQ(p) is a QF then
T(Q(p) is aQF.

A corollary of theQTRis that if X is a random variable with Qgiven byQ(p), then the QF of the
transformedvariable, Y=T(X), is T(Q(p)) (Gilchrist 2000). One well-known Q-transformationused to
transform a distribution with support ¢ebh  iHto a distribution with support oj®,1], is by applying
the inverseprobit Q-transformation(IP-QT) to its QF. The IRQT is simply the cdf of the standard
normal distributionT(X) = KX .

In the next two sections waesignour JQPD distribution systenDur system is similar in spirit to
theP- andL-SQN systera However, as wahow, our systerhas cdf representations (Criterion &hdis
maximaly-feasible(Criterion 3. We segent the develoment of the QPD system intdounded (J

QPD-B) andsemibounded J-QPD-S) sulsystems.
4.2 TheJ-QPD-B Distributions
Recallfrom §3.2thatSU distributions have support ¢0 , . Bd)obtain a distribution havingrbitrary,

but finite, lower and uppesupport boundsa naturalideais to apply thewell-known IP-QT to the SU

quantile functiorin Equation(5), along with appropriate shifting and scaling to sat{$fy}:

° In the development of our new@PD system, we also considered the Burr (1973) and Dagum (1977) systems, as
well as the Exponentiated Weibull distribution proposed by Mudholkar and Srivastava (1993) (among others), as a
basis for construction. However, iihall three of these systems have simple analytical expressions for their QF and
CDF, and are quite flexible, we cannot directly express their distribution parameters in terms of an SPT and bounds
T they are not directly quantHearameterized (Criterioh). See footnote 9 for followp discussion.
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QAP=1 {u H (&u(P) 1 {u+) (x Rinbf (@ (p) F))
Note thathe QTRguarantees tha®,(p) is a QF corresponding ta distribution with support ofi, u], so
long as we maintain the SU parameter requiremexsd, U > 0. Now, we desire forQ (p) to be fully
paraneterizecby any compatibled, . By inspection observethat| andu correspond to theDand 100"
percentile, respectivelyas desired.

With {I, u} presumedknown, we currentlyhavefour unknowrs: { a; U, 9, 3} . However, we can only
producethree non-degenerateequations withthe lowbasehigh assessments given in the SRT. A
natural idea is to fix one of ¢hparametersbut it is not immedately obvious what constitutegood
choicesfor the fixed parameteand corresponding value(s)

First, note thatQ(p) is invertible (Criterion 2) Thus, we focus on Criteria 1 (quantile
parameterized) and 3 (maximafigasiblg in making a strategic selectidar the choice of the fixed
parameterln particular, he choice of the fixedarameter and value should yield a QF which:

i.  Can accommodatanycompatibé d, (Criterion3).

ii. Is easy to rgparameterizén termsof d, = (I, x,u) (Criterion1).
Consider anygiven real numberc > 0. As we soon show, allowingto assumeone of three possible
values{-c, 0,c}, yields a QRhatsatisfies (i)for anyparticularc > 0. On the other hand, it turns out that
this propertydoes not hold whefixing values for{a; 0, 3}.

In choosing apedfic valuefor ¢, we now bear (i) in mind. In particular, lettingc= F'(1 &)
results in a simpleexplicit solution to the distribution parameténsterms ofd, =(I, x,u). In particular,
for assessments and bounds joimgilyen ind, =(I, x,u), theresulting QF for the-QPD-B distributions
is as follows:

Q(P=I tu b (£ sinn( (¢ nI. ™
where,

c= F'1 a),
L= Fléxa-l 6 =t Xio - Hg _t }aél-

geeu_ Q E-I 2 Ty ’

n=sgnL H =B)
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éeLn=1
x=] B, n=0
fH,n= 4
&l § .4 H-L ¢
d_é% gsh Zmin(B- LH -B)
H-L
~ sinh(2c)

We nownotesome observations regardikguation (7)
1 {& 0 3} are all specified directljn terms ofd, , along with constant and parametem (which
assumes-l, 0, 1}, dependingnthe values ofl,x, ,u).

1 One can easily verifthat

o Q,0)=I
0 Qa)=x

0 Q(0.5)= %4
0 Q-a) =,
0 Qy@=u

1 Given the simple invertible form dhe J-QPD-B QF, we carmalsoproduce the cdf (Criterion 2)

18 ,,8 13 e 18 o8
Fa(x) = FS%S} gnht ® gé‘e 3 —Ige Qenef ®
¢ =

1 Recall that sgn(0¥> 0. Examining the expression farin (7) above, we see that this occ(ins:0)

when:L+H -2B 6.
L+H 2B & 4 0z/
Thus, this caseiolates the parameter requiremefiis> 0) as is. However, usinthe parameter

expressions in {7 we note the following:

__sinh(y) _ /sinh( an'l(p) +nc))
lim =1 - lim 3
-0y 0 oi’F'l(p) +nc)
However,
I|m/ aElim oH-1)

dosinh(2zc) X
Therefore, for the special case in whith O, we define the QF ii7) as follows:

(P =1 €u b %B zHZ'CL T 3P (7b)
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Establishing théIF Property of thel-QPD-B Distribution

Basedon the QF representation given iBquation(7), we see thus far that thileQPD-B distribution
satisfies Criteria 1 and Ve now demonstratigs conformity toCriterion31 the MF property.
Proposition 1 (MF Property). Considerany compatibled, =(I, x,u) =,X ,X5,% ,u). There

exists a unigue quantile functio, charaterized by 7), thatsatisfies

0 Q(0)=I

0 Qa)=x

0 Q:(0.5= X

0 Q@-a) =,

0 Q@®=u

Proof. See AppendiA.

Illustrative Example

To illustrate, we now revisit the market share examplmtroduced in 8.3 Given
d,,, =(0,0.32,0.40,0.60,;, and usingEquation (7), we compute the parameteasid construct the
corresponding-QPD-B QF assignmerds follows:

c= F'1 a) ='(.90) 1.281¢

L= Fl‘:"agxa__-l g: H0.32) -6.4677
= Fiaes ! 8- Ho40 82533

H= FaXa! 82 Ho60 o253z
u- *
n=sgnL +H B) sgn( 0.4677 0.2533 2(-0.2533))
éLn=1
x=i B,n=0 =L =0:4677
tH,n= 41

H
@Oz

a ,a H-L o)
d= sh 5=0.8661
& ¢ E&mine-LH -B) T

_ H-L _ 0.2533-( 0.4677)
sinh(2c) ~sinh(2>0.8661(1.2816)

Q(P =1 €u h (F inh( @ () no)H-

@1585.

Thus,
Q.(p) = F( 0.4677 8:1585sirh 0.86p1*Fo( ) }.2&)))5
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Figure 7 provides a plot of this-OPD-B QF assignment, along withe corresponding pdfJsing this

newly-constructed QF, one can easily confirm that:

Q;(0)=0, Q;(0.10) =0.32,Q, (0.50) =0.4Q, (0.90) =0.@,(2) 1.
Figure 7. J-QPD-B Assignment for the Market ShareExample1 QF (left), pdf (right)

1 T T @ 6
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0w ) 3 [
|
04r 1 I|
2T L
| Y
|
0.2} 1l \
/ \H
oG : : : : 0 — : : ]
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
X

el
Thus far,we have demonstrated that td€QPD-B distribution satisfies Giteria 1, 2,3. We defer

demonstrating its conformity torfferia4 and 5(closeness taommonlynamed distributionsand highly

flexible) to 85 and 86, respectivelyWe now construct th&QPD-S distribution, which has senfiounded

support.

4.3 The JQPD-S Distribution s
While a finite lower limit of support is sensible fomany physical quantitiege.g., noAnegativity)

experts and/or analysts may not always deem it appropriate to impose a finite valu€hfes, we now

developthe JJQPD-S distributions,designed to havsupport oril, ,By)once again starting with the SU

distributions.
Since SU distributions have support @B, , B btain a distribution havingupport onl, D)

(for some specifiet), a natural idea is to apply theelknown exponential @ransformation (Exp) to the

SU gquantile function, along with appropriate shifting to satisfy
Q(p) =1 exp(x #sinh( @'Fp) Ko
=1 gexp( /sinh( ¢EO) D). @ 0~  exp
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Q.(p), as givenhas infinitepositive moments (see Appendixf@& discussion)We thus embed one
more strategially-chosentransformatiorwithin this QF, along with a rparameterization analogous to
that of the JQPD-B distributions.Given d, =(I, x, 9, wherel is presumed finite and known, the
resulting QF for the-QPD-S distributions, is as follows:

Qu(p =1 gexp| /sint{ sintt( a® p) sintt e ) ©
where,

c= F'1 a),

=log(x, 1).B log(xs I%H log, , 1),
n=sgnL H =B)

€ X-ILn4
|

g=1 %5 1,0 &
X ,-lLn=

<l H- L
c2min(B- LH -B)

ot
o

The application of thesinh* operatof® in (9) results in allmoments beindinite (see Appendix C
for a proof). Also, notice that it +H -2B &, thenn=sgnL +H 2ZB) sgn(0) 1 in which case we
have:

Q(p) = -tyexp( fsink{ sinkf( o p))) = &b /&) (9b)
In particular we precisely recover a lognormal distribution witt=log( ¢ d4og(x,s H ands =/ =
(HiB)/c (in this case)and shifted to have support oh [ B) . T HQBGsS, distibdtiens ake a
generalization oflognormal distributions, but parameterized by any compatibfensstric percentile
triplet and known lower bow (Criterion 1) and effectively having two shape parametdis, &,

whereas lognormal distributions only have the single shape pararseter (

9We are not the first authors to characterize a distribution quantile function using a combination of the sinh and
arcsinh operators, as in (10). See Jones and Pewsey (2009) for the development and appiicatmrafi <isn m h 0
type transformation upon random variables to generate new probability distributions. To the best of our knowledge,
however, our particular combination of sinh and arcsinh applications, along with our strafegjiameterization

givenin (10) amounts to a novel probability distribution system parameterized by quantiles.

" The Burr, Dagum, and Exponetiated Weibull distributions all have-bemmded support and two shape

parameters, similar to our newQPD-S system. However, we findghthey are not maximaHfeasible.

Al ternatively, we find that the fisinho opesandpwbit affor d:
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As with the JQPD-B distributions, we can obtain the qdriterion 2)of the 3QPD-S distribution

by simply inverting is QF representation given in(9his yields:

N eH e

(10

F(X) = % QNjnha;smhla 1% '%8 sn%n1 nad)

Establishing théVIF Property of thel-QPD-S Distribution

We now show that theé-QPD-S distribution possesses the MF prope(Griterion 3)
Proposition 2 (MF Property). Consider any compatiblel, =(I, x, 9. There exists a unique

guantilefunction,Q, characterized bygj, that satisfies

o Q(0)=I

o Qsa)=x

0 Qs(0.5)= X
0 Q(-a) =,
0o Q==

Proof. See AppendiD.

Illustrative Example

We now apply the -RQPDS distribution to the CAPEX exampleintroduced in 8.3, in which

=(0,30,40,60,2 $MM. Using the expressions given in)(Qve obtain the following QF assignment:
Q.(p) =30 éxp( 0.4282 <infh 0.6204 sirth 0.5242" @)@)

010

Figure8 provides a plot ofQ.( p) for the CAPEX example, along with the corresponding Béthilar to
the JQPD-B system in the market shaexample, notice irFigure 8 that the JQPD-S assignment
precisely honors the loasehigh assessmentsin this case, the {1f) 50", 90"} percentile assessment

values of {30, 40, 60} SMM as well as the known lower limit of support (zero, in this case).

transformations, allows for maximufaasibility and a diverse range of shapes, including: symmetiiclewed
bell-shaped distributions, bimodal (includingdbaped), and-shaped distributions all within one simple system.
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Figure 8. J-QPD-S Assignment for the CAPEX Eamplei QF (left), pdf (right)
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However, recall the more skewed examipten Figure6, whered, ,, =(0,10,40,50,= , and where
the L-SQN distribution results imfeasibility. If we apply theJ}QPD-S distribution to these four points,
we dotain the following QF:
Q.(p) =50 é‘)<p( 0.0644 <ty 1.956 simff 2.7036° p()[))'-)
Figure 9 provides a plot of the QF, along withcorrespondingdf. The odd shape is due to the
unusual percentile spacing in this example. However, the point is to illustrate the MF property, by
showing that theJ-QPD-S distribution produces a valid QF exactly honorufigi where the ESQN fails,

as we saw ifrigure®.
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Figure 9. J-QPD-S Assignment for d,,, =(0,10,40,50,= i QF (left), pdf (right)
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Thus far, we have demonstrated that #@PD-S distribution satisfies Qiteria 1 through3. In 85
(6), we demonstrate itsonformity to Criterion 4 closeness to commontyamed distributions (Criterion

61 flexibility in accordance with Pearsan)
4.4 Depicting the Feasibility of the J-QPD Distributions

Having developed the newQPD-B and JQPD-S distributionsystems we now compare the extent of
their feasibility to that of several commontyamed distributionsRecall that in both cases, we have a
given finite lower boundl}, along with a elicited SPT x,, . Without loss of genmality, we normalize the
JQPD distributiors in order to remove location and scale. In particular, fix &y (0, 0.%), and

consider the following normalizing measures:

X

.5

S, =

<

a

X, - |
X050~ I

t. =

a

Note thats, andt, ar e nor mal i zed quantities wused tiothedepi ct
span of compatiblel, vectors that a system can satisfy, within the context of our SPT settier than
direct measures of A swidt)pRetererce®fog measuresiokeshapdtoeshe or t
following important observations:

1 s, andt, areinvariant to simple changes of location and/or scale upon the distribution.
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1 Sincel = Q(0), by the monotonicity of percentiles, both andt, are bounded between
zero and one.
f For eachal (0,0.50, all nondegenerate univariate probability distributions live in the
unit square defined bys, I [0,1], t, 1 [0,1].
Figure 10 shows the span of several commengmed distributions within thgs,, t} space fortU
= 0.10. Notice that the uniform and exponential distributions correspond to a gioiglewithin this
space, since they lack shape parameters. Alternatively, the lognormal and gamma distribution systems
each have a single shape parameter, and thus correspocutve\within the{s,, t} space. In particular,
the familyof lognormal distributions lies along the line segmsnt t, within the{s,, t} space, for any
value ofUN (0, 0.). Since the family of beta distributions (with unspecified upper bound}wms
separate shape parameters, it is contained irtvtbelimensional (shadedkegion within the {s, t}
space, for each value bf Finally, the SB distributions occupy the lower half of the unit squaFégure
10, defined bys, > t,. By contrastthe MF property of the-QPD system implies that these distributions
span theentireinterior of the unit square defined by;i (0,1), t, 1 (0,1). We revisit the{s,, t} spacen
85, where we compare the closeness (Critedpif JQPD distributions to a vast array of commenly

named distributions.

Figure 10. Span of Several Existing Distributions within the{s,, t} Space forU= 0.10

a) Some CommonlyNamed Distributions b) SB Distributions
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5. The Closeness of the-@PD Distributions to Commonly-Named Distributions

Up to this point, we have shown that th©@PD-B andJ-QPD-S distributionssatisfy Giteria 1 througis,
of those listed in 8 However,a natural questiois how closethe JJQPD distributionsareto commonly
named distributiongCriterion 4). In this section, w compare(1l) the JQPD-B systemto the beta
distributions, which include gamma as a limiting case, assuming (without loss of generality) support on
[0, 1], and (2)the JQPD-S systemto the betaprime distributions,which includeboth gamma and
inversegamma distributions as limiting casessuming (withoutdss of generality) support 4o , D)
In both cases, we perform the comparison with respect to two commorni SRI$10", 50", 90"} and
the {5", 50", 95" percentiles.

To give context, suppose that erpertprovides {10", 50", 90" or {5", 50", 95" percentile
assessments consistent with each commordyme d di stri buti on, presumed
distribution. We then compare eacltommonlynameddistribuion to the correspondingQPD-B (J-

QPD-S) assignment, sharingdgltsame SPT,alupport on). [ O, 1] ([0, B)

12\We do not compare the@PD-S distributions to the lognormal distributions, since we showed in §4 that the J
QPD-S system subsumése entire lognormal family as a special case.
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5.1 Closeness Metrics

In comparing each commontya me d di stribution (assumed to be

corresponding-QPD assignment, we uieeemeasures ofloseness

1 APDMI Theabsolute percent difference in medysnterdecilerange (P90-P10)

1 APDVi The absolute percent difference in the variandgéh respect to the true variance.

1 KSi The KolmogorovSmirnov(KS) distance.
When comparing the mean values for two different distributions, we deem it appropriste frror
measure to be invariant to changes of location and daetle7; denote the mean of the true (commenly
named) distribution, andr1 denote the mean of the correspondif@RD assignment. The APDM error
measure is given by:

APDM =100

Mj . (11)

X500 = %

Notice that the APDM error measure, as defined, is invariant to location and scale, as desired. It is
more common to divide by the standard deviatien,of the true distribution. However, we ugg - X,
as the normlizing measure of spread sinse is not typically known in practice, and since the standard
deviations of the true and assigned@BD) distributions will be different recall that we are matching
percentiles, and natandard deviations.

Alternatively, when comparing the variances of two distributions, we can remove location and
scale by simply comparing with respect to the variance of the true distribution.uBimgy and vi to
denote the two variances in analogous fasht@APDYV error measure is given by:

APDV =100

: (12

Finally, we now briefly describe the KS distance between two distributfamiswo separate cdfs,

denotedF(x) and G(X), the KS distance betwedf(x) and G(X) is givenby:
Dys(F.G)=sup|F &) -G ()| (13)

The KS distance is the largest absolute vertical deviation betwg§gnand G(x), as depicted ifrigure

11
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Figure 11. lllustration of the KS Distance betweercdfs F and G.
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5.2 Methodology for Comparing J-QPD to Commonly-Named Distributions
Figure 12 displays the span of the beta distributions within {hg, t,,3 space. Notehat each point

within the shaded region corresponds to a specific beta distribution; i.e., a specific pair Bf {
parametersObserve that the beta distributions are partitioned into several key subfamilishaped
(regionl-Z , wherea O1, b O1), U-shaped (regiohU, wherea < 1, b < 1), rightskewed Ehaped (region

I-J, witha< 1, b O1), and leftskewed Bhaped (regioi+J, with a O1, b < 1). The uniform distributiong
=1,b=1)occurs as the intersection of the four subfamilies, while the exponential distribution is a special
case of the gamma distributions, and occurs as a limiting case within theskégitd Jhaped
distributions. Finally, observe thimttedcurve of symmetc distributions & = b).

We construct a grid of approximately 10d0 points covering the feasible region for the beta
distributions shown irFigure 12, spaced 0.00th each dimension. For each such point, we identify the
corresponding beta distribution by solving for the corresponding}{parameter pair. Next, we compute
d, =(0,X,,%50.% ,1) for this beta distribution, and then construct the QF for the correspon@fdpJ
B distribution, parameterized l, . Then, we computhe mean and variance of the beta distribution, as
well as the mean and variance of the comesiing JQPD-B assignment, and subsequently compute the
APDM and APDV errors using the expressions given nilL8Finally, we evaluate the KS distance

between the éta distribution, and its correspondin®@®D-B assignment.
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Figure 12. Feasible Region of the Beta Distributions in th¢s, ,, t,,3 Space
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5.3 The Closeness of-QPD-B Distributions to Commonly-Named Distributions

Before providing our comprehensive comparison of t@PID-B distributions with respect to the family
of beta distributions, we provide several examples in order to lend context and guide irfigtioal3
andFigure 14 provide pdfsandcdfs, respectivelyfor nine 3QPD-B distributions, each parameterized by
do10= (1, X010 X050 X 00oU) fOr somecommonlynamed distributions. In additiofsigure 14 provides the
APDM, APDV, and KS error measures in each case

With the exception of the two triangular distributions, notice that the pdf of e&dADB
distribution (dashed) is barely discernible from the named distribution (solid). The cdfs are nearly
indiscernible in all nine caseBxcept for the two highhskewed Jshaped beta distributions (beta(10, 1)
and beta(0.7, 5)), all APDM (APDV) errors are less than 0.03% (1%). Exoeplte two triangular

distributions, KS distances are no greater than 0.0035.
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Figure 13. J-QPD-B (dashed Parameterized by d;, ,, for Some Named Distributions (solifii PDFs
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Figure 14. J-QPD-B (dashed Parameterized byd, ,, for Some Named Distributions(solid) i CDFs
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We now compare thdQPD-B distribuions toour equally spaced grid abughly 104000 beta
distributions covering the region depicted iRigure 12. Figure 15 depfcts the span of the beta
distributions within the{s,,; t,04 ({S.10 1.3 ) Space, along wh shaded error contours &PDM,
APDV, and KS distancesf the 3JQPD-B distributions with respecbtthe corresponding bethstribution
sharing the same SPTNote that due to the presence of tweparate shape parameters, the beta
distributions occupy gegionfor each? within the{s,, t} space, while the gamnastributions occupy a

curveat the boundary

Figure 15. Error Measures of J-QPD-B w.r.t. Beta Distributions: dj . (left) and d,,, (right)
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Table 1 provides summary statistics for each error measure across our ¢ @d0 points in
Figure15. For all three error measures, values are the worst (greatest) for bimodal and/or highly skewed
Jshaped distributions. For the-shaped beta distributions, for instance, errors grow largest as we
approach the exponential distribution at the boundaryigure 15. For thel-Z region asa-whole,
however, notice thaAPDM (APDV) values are generally less than 0.2% (5%), values which are

compar abl e t o t bféigufeBleKkSalistdnGes férXhbz regmmaeel generally less than

(@]

0.003, a value compar alFigeel4d o the fiBeta (10, 1) 0
Table 1. Error Measures for J-QPD-B Distributions w.r.t. Beta Distributions (by region)

Minimum Median Maximum  Mean

I-Z (Bet a)

APDM (d 45) 0.0% 0.0% 0.6% 0.0%
APDM (d ) 0.0% 0.0% 1.6% 0.1%
APDV (d,0s) 0.0% 0.1% 51.7%6 0.3%
APDV (dj,,) 0.0% 0.3% 46.68% 1.1%
KS distance(d,, os) 0.0 0.0 0.0 0.0
KS distance(d] ,,) 0.0 0.0 0.0 0.0
| - J(Beta)

APDM (d 45) 0.0% 0.1% 2.5% 0.2%
APDM (d ) 0.0% 0.0% 9.7% 0.2%
APDV (d; ¢s) 0.0% 06% 44506  2.3%
APDV (dj ) 0.0% 1.0% 809.06  4.1%
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KS distance(d, ,) 0.0 0.0 0.0 0.0
KS distance(d, ,,) 0.0 0.0 0.0 0.0
| - U(Beta)

APDM (dj s) 0.0% 0.3% 2.0% 0.4%
APDM (d ) 0.0% 0.1% 2.2% 0.2%
APDV (dj ) 0.0% 1.7% 9.8% 2.0%
APDV (dj ) 0.0% 0.7% 9.3% 1.1%
KS distance(d, ,s) 0.0 0.0 0.1 0.0
KS distance(d, ) 0.0 0.0 0.1 0.0

Errors are generally larger for the and FU regions, as compared to thé region. Notice that
for the APDM and APDV error measuresTiablel, error valuesncrease rapidlyor distributions at the
boundaries of both th&J and FU regions (see maximum values), while overall errors across these
regionsare small (based on median values). For example, forl{theegion, we find tht errors only
increase rapidasaY 0 @Y db, or \Bick distribuonssesist at the lower left and upper

right corners of the region depictedrigurel5.
5.4 The Closeness of -DPD-S Distributions to Commonly-Named Distributions

This section parallels=3in structure, excephat wenow compare the-QPD-S distributions to thdeta
prime distributionsWe first build context with several examplésgure 16 (Figure 17) provides pdfs
(cdfs) forsix JJQPD-S distributions, each parameterized thy,, = (I,X 15X 050 X 0,59 fOr the pdfs (cdfs) of
the six respective commonipamed distributions showrall havingsemtinfinite support In addition,
Figurel7 provides the RDM, APDV, and KS error measures in each case.
As with the JQPD-B comparisons, each@PD-S distribution ¢(lashed) is barely discernible from
the named distribution (solidparticularly with respect to cdfs. Notice that all three error measures are
zerofor the lognormal case shown Kigure 16 and Figure 17, since we established that th€@PD-S
distributions subsume the lognormal distributions as a special case. The largest errors occur in the case of
the more skewed,-shaped distributions, asshown i n the HAExponenti al (1) 0

AiGamma (0.5, 1)0 cases.
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Figure 16. J-QPD-S (dashed) Parameterized by, ,, for Some Named Distributions (solid)i PDFs
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Figure 17. J-QPD-S (dashed) Parameterized byd, ,, for Some Named Distributions (solid)i cdfs

We nowcompare the-QPD-S distributions to thdetaprime distributions following an analogous
procedure to that discussed ib.Zfor betaprime distributions. In particular, we constructgrid of
approximately 8,000 points across the feasible region for the fpetene distributionsspaced 0.002 in

each dimensiorfigure18 depicts the feasible regiai thebetaprimedistributions within thes, ;5 t, 03
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