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« beta distribution (type 1)
« beta prime distribution (type V1)
« Cauchy distribution (type IV)
e chi-squared distribution (type I}
« continuous uniform distribution (limit of type I)
« exponential distribution (type I11)
« gamma distribution (type 1)
& » F-distribution (type WI)
= inverse-chi-squared distribution (type V)
» inverse-gamma distribution (type V)
« normal distribution (limit of type 1, 11I, IV, V. or V1)
« Student's t-distribution (type VII, which is the non-skewed subtype of type IV)
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Flexibility: can match any combination of skewness and kurtosis Shortcomings:

. Limited to 2 shape parameters
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interpretation

of probability
Decision analysis
practice evolves
predominantly with
discrete methods ...
state of foundation laid: ... NUMerous
information continuous unsuccessful
(including probabilities can a“?rr;‘gsse ntgyuse
frequency) legitimately take distributions for
on any shape state-of-information
(Bayes,1763. Further
developed by Laplace
late 1700's.)
normal
distribution dozens of distributions
normal modified for invented, thousands of pages
frequency 0_”')/ distribution skewness/  written (including Johnson, 1959;
(classical statistics) published kurtosis  Johnson et. al. 1970, 1982, 1994)
(DeMoivre,1756) flexibility
(Edgeworth
1896, 1907.
Pearson,
1895,1901,
1916)
A A A A A
1700 1800 1900 2000 2100
Year

Page 5

© 2016 Keelin Reeds Partners. All rights reserved.



Page 6

"#$

Early days at Stanford

& “It's not easy to invent a new probability distribution.”

Decision analysis (DA) with discrete methods -- first 25 years of
professional practice

& Continuous distributions were desirable but largely impractical.

DA with simulation — next 15 years. Continuous distributions
& Computationally tractable (in a few cases)

& Otherwise impractical (encoding, parameter estimation, lack of
flexibility)

2009 light-bulb moment: why not invent continuous distributions that meet
the needs of modern (“state-of-information”) probability applications?

& White-board sketches (starting with how to add skewness to the
Normal distribution and parameterize it with 10/50/90 assessments)
led to ...
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logistic distribution

(

skewness term
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... varying skewness parameter ,

Cumulative Probability
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X =a; + azln(i%y) +az3(y—05)In (1%3,)
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kurtosis term

“4-term
metalog
distribution”

... generalizes to any number of terms M, (y)
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... varying kurtosis parameter a,
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“3-term metalog distribution”
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Given CDF data points (x,¥) where x = (x4,..., X5, ), ¥ = (¥, ..., Vi ). and m>=n,
the constants a = (a4, ..., a, ) are related to the data by a set of linear equations:

% =aq + azln( }_‘1 )—i— az(y; — 0.5) lﬂ,(li—ij +ay(y; —0.5)+ ...

1-¥4 ¥4
_ ¥z _ ¥z —
xE = ﬂ’l + ﬂ-zln(l_}‘ﬂ) + ﬂ-a[:}:rz 05:] iﬂ(l—}-‘ﬂ) + ﬂ-q[:}fz D.E-:] +

Xy = @y + azln{lf’:m) +az(y, — 0.5) iﬂ{li—:’m) +asly, —05)+ ..

Equivalently, x = Ya, where x and a are column vectors and Y is the m x n matrix

1 ()  (4-05)mh [11—11] (y, — 0.5) ..

1-w

1 1n(1f;fm) (v — 0.5) In (ﬁ) (v, — 0.5) ...

Cumulative Probability
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invertibility guaranteed
except in pathological cases

casel |fYisinvertible and m=n, then a is uniquely determined by a = Yx.

If m=n and ¥ has rank of at least n, then a can be estimated

case 2
by ordinary least squares a =[YTY]1Y x.

*

a=[YY1Yx

works either way

Feasibility of ( , ) : M,(y) is strictly increasing. Equivalently, density function m,(y) is positive over 0<y<1.
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For example, for the 4-term metalog

metalog variance: n'zaz + ( )a3 +aza, +3; i

metalog 3™ central moment:
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Basis of Criteria Examples
Legitimacy

Type | Derived from Distribution normal
an underlying | reflects the exponential
probability model
model

Type | Matches Distribution generalized logit-normal (Mead, 1965)
specific types | matches data
of empirical skewed generalized t distribution
data (Theodossiou,1994)

... (dozens of others)

Type Il Matches most | Flexibility Pearson distributions (1895,1901,1916)
any set of Simplicity Johnson distributions (1949,1982)
empirical (or Ease of use
assessed) data Quantile parameterized distributions

(Keelin and Powley, 2011)
Metalog distributions (this research)
Page 15 © 2016 Keelin Reeds Partners. All rights reserved.




o /

Base Form Selected Modification Distribution Parameter
Distribution for Modification Method Selection Estimation

Pearson

N

method of
moments

Pearson 1895,1901,1916)

normal

(Edgeworth 1896, 1907;

/@bability densm\ parameter Ability to matcm
function (PDF) addition moments

(Edgeworth 1896, 1907; (Mead, 1965; (Pearson 1895,1901,1916;

Charlier 1928; Johnson Pearson 1895,1901,1916; Theodossiou,1994) Johnson 1949; Tadikamalla
wrlier 192M nd Johnson 1982
b logistic cumulative match natural maximum
distribution

(Tadikamalla and Johnson bounds likelihood

Pearson 1895,1901,191

metalog
N

substitution

W function (CDF) Pearson 1895,1901,191 (Fisher 1932)
(Burr, 1942)
student t ﬂjantile functi(m transformation probability-
(McDonald and Newey, (inverse CDF) (Johnson 1949; Tadikamalla Weighted- and L-
1988; Theodossiou,1994) Keelin and Powley, 2011 and Johnson 1982; Hadlock moments
and Bickel, thd) (Greenwood, et. al. 1979;

Hosking, 1990)

characteristic series expansion guantile
function Edgeworth 1896, 1907, parameterized
(Ord 1972) Charlier 1928)

(Keelin and Powley, 2011.
&adlock and Bickel, tbd.)/
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7 & * ' )
Meta-distribution: a generalization of a base distribution created by substituting
for one or more of its parameters an unlimited number of shape parameters

Quantile function QPD + Flexibility -- Properties Advantages Prior research
linear in its easy to (b, b,) plot (feasibility, relative to
parameters simulate moments, other
transforms, distributions
etc.)
$ “The Metalog
metalog =m / Ol(T Distributions”,
Keelin, 2016
“Quantile-
meta-normal =m+s F1() (unexplored) (for 4 terms) (for 4 terms) Di sz?gitinl;t;nZKe:elin
and Powley, 2011
meta- =-(1/1)01
exponential
meta- =m- b01 01
Gumbel
unexplored
meta- - o0& 3 ( P )
Cauchy 2= g& P
others ... ? ? ?
- * 8 )
Page 18
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(kurtosis)

b,

0 8)
FleXibilitYZ Metalog flexibility expands with number of terms

Example: Bounded Metalog Shape Flexibility
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Other Relative Strengths:

Unlimited shape parameters

For many areas of (b,, b,), the
metalog offers

choice of boundedness

ability to match 5t and
higher-order moments

3 functional forms (one each for
unbounded, semi-bounded, and
bounded)

Linear quantile parameterization

Caveat:

Certain very extreme distributions
(e.g. Cauchy with infinite moments)
require transformation in order to
enable a good metalog
representation.



metalog

# #(#® . 8; 78Ik
metalog

'# #" = %
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%

metalog
' # ##H > @ A8 , 8B %
pdf: y =
metalog

'# ## 456! 780 8 9 %

© 2016 Keelin Reeds Partners. All rights reserved.



Probability Density
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Silver Hilton Steelhead Lodge
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Steelhead Trout Weight (Ibs)

3,474 catch-and-release fish records 2010-
2014. Babine River, British Columbia.

“1 salt” vs. “2 salt” fish-biology research questions:
fish weights (relative and absolute)?
relative population sizes?

Steelhead Life Cycle

. “1 salt” “2 salt” Bap:
river X 4 Abing Rive,
v \4 v
ocean age (years) 10
<
e
ee(\a
o\
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Steelhead Trout Weight (Ibs)

3,474 catch-and-release fish records 2010-
2014. Babine River, British Columbia.

1-salt?
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**

Metalog Panel for Fish Biology Data (n = 2-16 terms)

n=2 n=3 n=4 n=5 n=6
n=7 n=8 n=9 n=10 n=11
n=12 n=13 n=14 n=15 n=16
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Maximum Annual River Gauge Height (ft)

Williamson River (below the Sprague River), near Chiloquin,
Oregon. USGS data 1920-2014.

10-terms
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16 Failed Banks FDIC Pool 2010-2

. Total number of loans — 1,456

— Unpaid Balance (UPB) -
$313,848,054

. 1st Liens — 855
— UPB- $261,983,734
— Performing — 435
— Non-Performing — 422

. 2" Liens — 605
- UPB -$51,864,320
— Performing — 462
— Non Performing — 143

. More than 200 cross-collateralized loans
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at $110 mm bid

150000 160000 170000 180000 190000 200000 210000 220000

ExIt Proceeds (5 '000s)

e LU Bredk Even  ss===HiBrezk Even

0 #
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@0 :

1,456 loans

259 “asset” assessments

259 discrete uncertainties

(correlated with market)

A

10% 50% 90%
Asset probability that realized value is less than ...
1 S 18,150 § 21,133 § 22,625
2 s 10465 $ 11,362 §$ 12,408 13.9
3 S 15,781 § 16,908 § 18,260 30%
4 S 4234 % 4,422 § 4,610
o S 2628 % 2979 § 3,295 14.9
6 S 13945 § 14,875 § 18,176 40% :
259 S 3500 % 4,000 % 4,500 16.2
Total $ 185,348 30%
portfolio exit proceeds cumulative portfolio exit proceeds density
1
09 Linvestor 4|E> investor //‘- irlwestor <:| inve?’ior
~ | losses <::| rofits LSSES PIOITS
0.8 P ////
0.7 // ’ \
06 / \
05 //
0.4 // / \
/ / \
0.2
. 4
150,000 160,000 170,000 180,000 190,000 200,000 210,000 220,000 150,000 160,000 170,000 180,000 190,000 200,000 210,000 220,000
Exit Proceeds ($ '000s) Xit Proceeds (S '000s)
Discrete Simulaton Data essssDiscrete Simulaton Metalog (n=5) ====Lo Break Even ====HiBreak Even . . R o o .
@ Discrete Simulation Metalog (n=5) LoBreak Even  ===HiBreak Even
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@

1,456 loans

0:

259 “asset” assessments

10% 50% 20%
Asset probability that realized value is less than ...
1 S 18,150 § 21,133 § 22,825
2 S 10465 §$ 11,362 § 12,408
3 S 15,781 § 16,908 § 18,260
4 S 4234 % 4,422 § 4,610
5 S 2629 § 2,979 § 3,295
6 S 13945 § 14,875 § 18,176
259 S 3500 % 4,000 § 4,500
Total $ 185,348

259 continuous uncertainties
(correlated with market)

Asset 1 CDF
r
I'4
|
1
y% Asset 1 PDF
y A
y 4
)2 4
—
$ $ $ $ $ $
o — #'+%
; J \
) — \
$ $ $ $ $ $

- '+ 0%

portfolio exit proceeds cumulative portfolio exit proceeds density

1
. estor /‘l IJ\ estor Wﬂ———— investor <:| invegtor /\

2 Tosses \J I-V profits // losses \ profits
0.8 4

/4
0.7
/
0.6
0.5 ////
y 77— \\
03 y
y/4

0.2 //
0.1

0 ——MM i i i | __,_'__-/ =

150,000 160,000 170,000 180,000 190,000 200,000 210,000 220,000 150,000 160,000 170,000 180,000 190,000 200,000 210,000 220,000

Exit Proceeds (5 '000s) Exit Proceeds ($ '000s)
Discrete Simulaton Data @mmm Discrete Simulaton Metalog (n=5)
Continuous Simulation Data @ Continuous Simulaton Metalog (n=5) @mmmDiscrete Simulation Metalog (n=5) s Continuous Simulation Metalog (n=5) Lo Break Even ===HiBreak Even
); # 8 +
Page 35
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@0

Metalogs enable virtually any shape and can provide real-time feedback as each point is added.

Cumulative Probability

1.0
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Probability Density
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100 0 20
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A. Decompose with conditional conditional probability

metalogs have
practically unlimited
shape and bounds
flexibility ...

- Easy in concept: {x,z|&} = {z|x,&} {x|&}

- Traditionally difficult in practice:
- Picking marginal and conditional distributions with sufficient shape and
bounds flexibility

- Conceptualizing how parameters of {z|x,&}, such as standard deviation,
skewness, a, b, etc., vary as a function of x for all x.

B. Couple marginal distributions (copulas) with
correlation coefficients

Couple marginal distributions directly (winkier, et. al, Copulas in Decision Analysis, Decision
Analysis, ...)

bidding
decision
example

Simulation of marginal distributions from correlated uniform distributions
(correlation accomplished by computing inverse CDF’s from the bivariate
normal with a given correlation coefficient)

- Difficult in practice: correlation coefficient assessments are
- Ablunt instrument, not clearly interpretable
- All but impossible for three or more mutually relevant uncertainties
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% ( = 8
) 3,6
{Shotwell, 24" Mission, Ashbury, Peters, Minna, Haight | &}

Portfolio manager: “Many decisions (sell now vs. hold vs. exchange) depend
critically on the joint distribution over 2023 sales prices of our properties.”

Assessment Question Response

1. How would you think about our range of uncertainty over It depends on what happens at
2023 selling prices for Shotwell? Shotwell and overall San Francisco
market conditions.

2. Assuming your median forecast for 2023 market conditions, $4.9 mm, $5.3 mm, $5.8 mm
what'’s your 10%, 50%, 90% range for Shotwell selling price?

3. Same question for the other six properties ...

4. Given median market conditions in 2023, how, if at all, would Not at all.
knowing that one property sold for a high or low price affect your
assessments for the other properties.

5. What'’s your 10%, 50%, 90% range over 2023 market relative  -20%, 0, +20%
to your forecast?

6. If you knew that 2023 market would be x%, how, if at all, I’d multiply all three by k = (1+x%).
would you adjust your answers to Question 2 for Shotwell?

7. Would you do this also for the other six properties? Yes, for all except Haight.

8. What'’s special about Haight and how would you adjust its Haight has less downside in bad
assessments for various market outcomes? markets. If x% < 0, I'd multiply by k =

(1+x%/2) and by k= (1+x%) otherwise.
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7 )

{market, Shotwell, 24", Mission, Ashbury, Peters, Minna, Haight | &}

Analytic Expression

= MyY(market | x = (-20%,0%,20%), y = (.1,.5,.9),&) | joint

* I:’properties MS-l(prOpertyl Xproperty-kk1 Y property: &)

= myt(market | x = (-20%,0%,20%), y = (.1,.5,.9),&) 7

* I:’properties m3'1(property| Xproperty-kk1 Y property: &)

where M; and m5 are well-defined, fully-parameterized,

continuous functions in closed form.

Difficulties: many questions of interest are difficult or intractable

EEE EEE F5G1<6l/1G<

. DD _D D l?_D
- conditionals: portfolio conditional on market

marginals: {Shotwell | &} = (ﬁShotwell | market, &} {market | &}
- portfolio: sum of mytyallyyeleyant sales prices over the properties

Outcomes Table

Aka: realizations array, SLURP (Sam Savage)

#  #'9% %
cumulative # / ‘01 0 * 20 . * 3

: ) ) ) ) ) ) )

: ) ) ) ) ) ) )

| joint ) ) ) ) ) ) )
| density , ) ) ) ) ) ) )
: ) ) ) ) ) ) )

: ) ) ) ) ) ) )
E ) ) ) ) ) ) )
E ) ) ) ) ) ) )
: ) ) ) ) ) ) )

, ) ) ) ) ) )

Solution to
these difficulties

- intuitive continuous representations and closed-forms for all the

above
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Outcomes Table
+

additional metalog distributions




A. Gather data empirically, or
B. Simulate using uniformly-distributed, mutually irrelevant random numbers y;:

Calculate market ; = M; (Y4, X = (-20%,0%,20%), y = (.1,.5,.9),&) with the
first random number y,

Given market ; outcome, update parameters of M, for all properties

With random numbersy ,, ..., yg, calculate sales price outcome = M,(y; |
Xoroperty” K Yproperty: &) fOr the seven properties

Record results and repeat 1-3 with different sets of random numbers
enough times (e.g. 1,000) to yield a probabilistic representation that’'s
equivalent to the analytic expression.
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Outcomes Table
(discrete, relevance preserved)

marginal: {Shotwell | &}

I

#OHM %
# A o * 20 . 30 Shotwell = Ms(y | X, Y, &)
) ) ) ) ) ) ) 10
) ) ) ) ) ) )
) ) ) ) ) ) o 7
) ) ) ) ) ) ) ' /A
) ) ) ) ) ) ) 2;
) ) ) ) ) ) ) :
! ) ) ) ) ) ) ) ) > 0.5 /;/I
! ) ) ) ) ) ) ) ) 0.4 Y/
) ) ) ) ) ) ) ) 0.3 7
) ) ) ) ) ) ) 0.2 Y4
0.1
Y ) ) ) ) ) o e
) ) ) ) ) ) ) 0 1 2 3 4 5 6 7 8 9 10
| ; ; ; ; ; ; 3 ’ e=mmetalog simulation ‘
) ) ) ) ) ) )
! ) ) ) ) ) ) ) density mg(y | X, Y, &)
y, = (t-0.5)/1000 (equally likely) _ ¢ T 0.50
sort o ™\
0.35 [\
0.30 II \\
0.25
01 #8 0 / \
. # 1 s /I \\
) ) ) 0.10 7 \
) ) ) 0.05
) ) ) 000 A SN
) ) ) 0 1 2 3 4 5 6 7 8 9 10
) ) )
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/
. . . Certain equivalent is
portfolio selling price is
; I # easy to calculate
sum over properties \
)
Outcomes Table I( 8 ( {portfolio | &}
(discrete, relevance preserved) ) ) |
| '
# O % ‘ ¢
# / 01 o * 20 . 3.0 "o o || 1 portfolio = Ms(y | X, ¥, &)
, ) ) ) ) ) ) D) ) ) L0 g
: r ) ) ) ) ) ) m ) ) ) 09 Y
S D B D D S B ) ) ) ) 08 7
) ) ) ) ) ) ) ) ) ) ) o7 7
) ) ) ) ) ) ) ) D) ) ) 06 /
) ) ) ) ) ) ) ) ) ) ) 0 /
iy ) ) ) ) ) ) ) ) ) ) ) o A
by oy )y ) ) ) ) ) ) ) . ]
) ) ) ) ) ) ) ) ) ) ) 01 4
) ) ) )y ) ) ) ) ) ) o
. 0 10 20 30 40 50 60 70 80 90 100 110
) ) ) ) ) ) ) ) ! ) ) ) @==metal of simulation
Y ) ) ) ) ) y || v ) ) | : |
) ) ) ) ) ) ) ) ) ) .
! ) ) ) ) ) ) ) ) ) ) density ms(y | X, y. &)
) ) ) ) ) ) ) ) ) ) ) 0.05
! ) ) ) ) ) ) ) ) 1) ) ) 0.04 A
L sorted _ 1 ZZ: / \
' [\
0.03
#3 0.02 I \
# / 0.02 I \
) ) ) 0.01 / \
) ) ) 0.01 / \
) ) ) 0.00 i i —/ : " " : \
) ) ) 0 10 20 30 40 50 60 70 8 90 100 110
) ) )
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-:0.B 8

B 8

Cumulative Probability Probability Density
1.0 0.12000
0.9 y
08 M 0.10000
0.7
0.08000
0.6 f
> 05 ~. 0.06000
04 f‘y
0.3 Ayy 0.04000 k
g'i ly 0.02000 —
0.0 f T T T T 0.00000 T T T
0 10 20 30 40 50 60 0.00 10.00 20.00 30.00 40.00 50.00 60.00
X X
| e metalog °o beta @ netalog beta
beta y = +( - y =
and a = 0.8, b=0.9, =10,
where 2 =0.8, =09, =10,
| 1" #(®)
metalo X —_—
9 I e® y
and wHIJI
where =10, 8 [ 4 a, -0.163
] a, 1.174
and a -0.163 a; -0.097
a, 1.174 a, -0.275
a; -0.097
a, -0.275
c * # )
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Define uncertainties z,, z,, z5, ... and decompose the joint into a marginal
and conditionals convenient for assessment or modeling

{21, 25, 25, ... | &} = {z, | &} {z, | 2,, &} {z5] 25, 23, &} ...

Encode the marginal(s) {z, | &} as a metalog M(z;; X,;, Y,1) — unbounded,
semi-bounded, or bounded as appropriate.

Select a metalog representation for each conditional uncertainty z; such
that its parameters are expressed as a function of the conditioning
variables

Mn(Z; X(Zi.1s Zios - ), Yai (Zias Zias -2 )
Assess or model these parameter functions.

Express the implied joint distribution as an Outcomes Table.

Explore any desired marginals, conditionals, and/or multivariate changes
of variable — using additional metalogs as appropriate to aid interpretation
and communication.

Fine tune and validate with the distribution owner.
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Historical context

Equations, parameters, and properties

Theoretical development

Shape flexibility compared to prior distributions

Applications
- Fish biology
- Hydrology
- Decision analysis

Multivariate metalogs

- Assessment protocol
- Real estate portfolio

Conclusions
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Allow frequency data to "speak for itself* with highly-flexible continuous
representations.

Select among unbounded, semi-bounded, or bounded distributions
Skip time-consuming parameter estimation
Facilitate Monte Carlo Simulation by convenient
o Sampling from input distributions
* Representing simulation outputs as smooth, continuous distributions
Use simple, closed-form equations -- easily-programmable-in-Excel

Apply in both univariate and multivariate contexts
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cumulative distribution function (cdf): cdf
r—
O (—) <« > (—)
probability density function (pdf):
$ $ $ $ $ $
1 o - %
y [ ]
pdf
)
)
)
where constants ;are derived from quantile assessments )
)
(#K L 8k O (e.g. for 10-50-90, a = 0.1) )
N 2 m )
C : : :
'[ (_)] e L) ) $ $ $ $ $ $

et #"'+0

* For the case where parameters are expressed symmetrically around the median. See definition of SPT (symmetric
percentile triplet) in Keelin, 2016.

Page 51 © 2016 Keelin Reeds Partners. All rights reserved.



Page 52

"#S 3:6

Early days — learning and experimentation at Stanford

First 25 years of professional practice (apl, Supertree, Risk Detective, Decision
Advisor ... reliance largely on others). Continuous distributions were

» Desirable for smooth representations and density (PDF) displays

« Impractical (none flexible enough to really “fit” the situation, complex to
parameterize, analytically intractable in tree-based tools, no practical way to
output PDF displays)

Founding of KR in 2003 (self reliance for developing DA tools, ended up
developing “KR Shell” — using Excel, Crystal Ball, expanded 10-50-90 formats)

« Simulation solved one problem — making continuous-distribution
computations analytically tractable — but did nothing to solve the other
problems.

« 2009 light-bulb moment: why not invent continuous distributions that are
practical (simple, flexible, easy and fast to use)?
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* White-board sketches (starting with how to add skewness to the Normal

distribution and parameterize it with 10/50/90 assessments) and collaboration
with Brad Powley led to

« “Quantile-Parameterized Distributions” (Decision Analysis, Sept 2011)

» This solved the “difficult-to-parameterize” problem, and -- with the “Simple

Q Normal” distribution -- made significant progress toward solving the “lack
of flexibility” problem

« But problems still remained: lack of control over bounds, lack of
algebraically-simple closed forms, lack of closed-form moments, need for
more flexibility to accurately show PDFs of uncertain inputs and outputs.

 The metalog family of distributions solves all these problems with simplicity,

flexibility (unlimited shape parameters), and ease/speed of use (choice of
bounds, quantile parameters)

« Asignificant improvement over previous families of flexible distributions --

Pearson (1895, 1901, 1916), Johnson (1949), and Tadikamalla and
Johnson (1982)

« Solution to decision problems that tree-based methods can’t solve well ...
and some other pleasant surprises.
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Cumulative Probability Probability Density
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